Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Microbe ; 4(3): e140-e148, 2023 03.
Article in English | MEDLINE | ID: covidwho-2184914

ABSTRACT

BACKGROUND: Capsid virus-like particles (cVLP) have proven safe and immunogenic and can be a versatile platform to counter pandemics. We aimed to clinically test a modular cVLP COVID-19 vaccine in individuals who were naive to SARS-CoV-2. METHODS: In this phase 1, single-centre, dose-escalation, adjuvant-selection, open-label clinical trial, we recruited participants at the Radboud University Medical Center in Nijmegen, Netherlands, and sequentially assigned them to seven groups. Eligible participants were healthy, aged 18-55 years, and tested negative for SARS-CoV-2 and anti-SARS-CoV-2 antibodies. Participants were vaccinated intramuscularly on days 0 and 28 with 6 µg, 12 µg, 25 µg, 50 µg, or 70 µg of the cVLP-based COVID-19 vaccine (ABNCoV2). A subgroup received MF59-adjuvanted ABNCoV2. Follow-up was for 24 weeks after second vaccination. The primary objectives were to assess the safety and tolerability of ABNCoV2 and to identify a dose that optimises the tolerability-immunogenicity ratio 14 days after the first vaccination. The primary safety endpoint was the number of related grade 3 adverse events and serious adverse events in the intention-to-treat population. The primary immunogenicity endpoint was the concentration of ABNCoV2-specific antibodies. The trial is registered with ClinicalTrials.gov, NCT04839146. FINDINGS: 45 participants (six to nine per group) were enrolled between March 15 and July 15, 2021. Participants had a total of 249 at least possibly related solicited adverse events (185 grade 1, 63 grade 2, and one grade 3) within a week after vaccination. Two serious adverse events occurred; one was classified as a possible adverse reaction. Antibody titres were dose-dependent with levels plateauing at a vaccination dose of 25-70 µg ABNCoV2. After second vaccination, live virus neutralisation activity against major SARS-CoV-2 variants was high but was lower with an omicron (BA.1) variant. Vaccine-specific IFNγ+ CD4+ T cells were induced. INTERPRETATION: Immunisation with ABNCoV2 was well tolerated, safe, and resulted in a functional immune response. The data support the need for additional clinical development of ABNCoV2 as a second-generation SARS-CoV-2 vaccine. The modular cVLP platform will accelerate vaccine development, beyond SARS-CoV-2. FUNDING: EU, Carlsberg Foundation, and the Novo Nordisk Foundation.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Adjuvants, Immunologic , Capsid , Capsid Proteins , COVID-19 Vaccines , SARS-CoV-2 , Viral Vaccines/adverse effects
3.
Front Immunol ; 13: 857440, 2022.
Article in English | MEDLINE | ID: covidwho-1817942

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. Here, we present non-human primate immunogenicity and protective efficacy data generated with the capsid virus-like particle (cVLP)-based vaccine ABNCoV2 that has previously demonstrated immunogenicity in mice. In rhesus macaques, a single vaccination with either 15 or 100 µg ABNCoV2 induced binding and neutralizing antibodies in a dose-dependent manner, at levels comparable to those measured in human convalescents. A second vaccine administration led to a >50-fold increase in neutralizing antibodies, with 2-log higher mean levels in the 100-µg ABNCoV2 group compared with convalescent samples. Upon SARS-CoV-2 challenge, a significant reduction in viral load was observed for both vaccine groups relative to the challenge control group, with no evidence of enhanced disease. Remarkably, neutralizing antibody titers against an original SARS-CoV-2 isolate and against variants of concern were comparable, indicating a potential for broad protection afforded by ABNCoV2, which is currently in clinical testing.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Capsid , Capsid Proteins , Humans , Macaca mulatta , SARS-CoV-2
4.
mBio ; 12(5): e0181321, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462901

ABSTRACT

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Subject(s)
Antibodies, Neutralizing/metabolism , Nanoparticles/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/immunology , Female , Glycosylation , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Sf9 Cells , Viral Vaccines/immunology
5.
Nat Commun ; 12(1): 324, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026822

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Capsid/immunology , Protein Binding/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL